LED Experiment chl

("A)

guuy

www.ZENMCU.com

Draft 1 2022-12-13

Copyright © 2022 by Trenton Henry, All rights reserved



LED Experiment #1
This document is a supplement to com.zenmcu.0031-0_(zenai-community-of-robots).pdf.

The purpose of the test is determine if I can use an LEDs as light sensors and measure the
approximate brightness of the incident light. The intended use case is to have two of them,
one on each side of a robot, to detect relative brightness on both sides, and then turn
towards (or away from) the light.

Background

So RGB LEDs aren't difficult to operate, although driving them directly from an MCU takes 3
pins (4 if you want to use them as light sensors). And I have collected several articles about
building short range low bandwidth half duplex LED to LED communications protocols (see
the Mitsubishi Electric Research Laboratories paper, etc). The idea struck me that maybe I
could just use RGB LEDs to shine each robot's color, sense the colors of other robots, and
possibly even communicate via these LEDs. I'm not going to explore the use of audio for
this yet because I think it would be annoying to listen to them, but its on the list for later.

(I did buy some KTD2026 I12C CRGB LED driver chips to save pins, but I have not tried them
yet.)

So I did some experiments.

First off I wanted to use software PWM to drive an RGB LED. Done, no major issues, except
that the brightness of the colors isn't well matched since I am not using current limiting
resistors, so I had to account for that in software.

Next, I wanted to see if LEDs could effectively sense other LEDs. And, in general, they can.
When reverse biased they discharge more quickly when exposed to light (of the same
wavelength they emit) than they do when in darkness.

So you can time how long they take to discharge, and then decide that the discharge time is
somehow proportional to the amount of light it senses. Larger LEDs take longer to discharge
than smaller LEDS, so I figured smaller would be better.

I implemented light sensing using an LED as the sensor per "Very Low-Cost Sensing and
Communication Using Bidirectional LEDs".

A plain old red LED (not RGB) is connected to two digital pins. The anode only needs a
digital out pin, and the cathode needs an output / input-no-pullup pin.

anode --->|--- cathode ==> input/ADC

1 --->|--- 0 == forward bias == emit
0 --->|--- 1 == reverse bias == charge
0 --->]--- float == sensing timing until the pin reads a 0

Observations:

I seemed to get inconsistent readings using the same LED on two different boards under the
same conditions.



In ambient lighting conditions the emitting LED must be fairly close (a few inches) to be
detected. That is fine for the robot community.

But there are multiple robots and they must each have their own unique Inigo Montoya, so I
switched to the common anode RGB LED.

RED - Interestingly the red junction is more sensitive than the plain old red LED. The
readings seem more consistent than with the plain old LED. Ambient is a little over 1 msec,
varying a few 10's of usecs. And it is quite sensitive to red light from a similar Rgb LED out
to at least 2 inches (I made no precise measurements).

GRN - Measurements in ambient are single digit msecs, varying a few hundred usec. Pretty
sensitive to shadows, but not that sensitive to a similar rGb LED except maybe in very low
ambient light at close range (like < 1 inch).

BLU - Moderately stable readings varying about a msec or so in ambient. Seems reasonably
sensitive to a similar rgB LED out to at least 2 inches.

Now at this point I was emboldened and I started working on communications via LED. I
didn't get it to work well and I decided to park that and work on locating an LED by sensing
it with other LEDs. So I built a small robot with two blue LEDs for eyes, and used it to try to
sense another blue LED.

Using two LEDs, each pointing slightly to left or right, should allow me to sense each LED's
light level and then turn the robot towards the brighter one. Simple. This is exactly how
Robigotchi and his contemporaries worked but they used CdS photoresistors and just
sensed ambient light. They worked very well. So this should work the same, right?

As an aside, this was an excuse to build a steerable vibrobot powered by a rechargeable
lithium coin cell. In short, I demonstrated that:

. Two pancake style vibration motors can be driven directly off the MCU pins. Very
good to know.

. The robot can drive forward, backward, left, and right under the control of firmware.
Motion isn't extremely precise, but it is better than I expected, honestly. Also very
good to know as I wondered about this for some time.

. The coin cell only powers the robot for a couple of minutes. I didn't time it precisely
because I was doing light sensing experiments, but it didn't last long enough in my
opinion. I kind of expected this, but it is disappointing. A larger battery will be ...
larger, and heavier, so the robot may need to be larger.

. I didn't use the I/R UART for comms in the experiments so far. It's coming, just need
to get there. For light sensing I just held the robot and dumped values over USB.



e &>

Each of the two blue LEDs sensed another blue LED just fine. But the two LEDS were
incredibly mismatched with respect to how fast they discharge in the same light conditions.

My attempts to calibrate them to each other have not worked well at all. I suspected that
maybe I did something stupid when I wired it up, but I checked it and it seems right.

So I set up another MCU on a breadboard and ran the same sensing code on it, swapping
out various similar blue LEDs. And no two of them had the even roughly the same
sensitivity. And in any case I don't want to have to test a ton of LEDs to find matched pairs.

So, I decided to try out a color sensor IC. I ordered some TCS34725 12C colors sensor
boards off Tindie. I have not tested them yet, but I have written some initial driver code and
wired them up. However, I discovered that they have a fixed single I2C node address. So I
cannot put two in the same I2C bus. And I only have one I2C bus.

Fortunately I discovered that there is another identical part with a different address. So I
hopped online to order some of those, only to learn that these parts are no longer
manufactured and no one has any in stock.

So I searched for a replacement sensor that can be given two addresses and came up
empty. I ended up ordering some VEML6040 color sensors, but they only have one address
also.

So the plan of record is something like:
See how well the TCS34725s I already have work, as a baseline.
See how well the VEML6040s work.

Then, assuming these work well enough, decide how to perform light seeking efficiently



using only one color sensor. There are two obvious options.
1) Mount the sensor stationary on the front of the robot and scan side to side.

2) Mount the sensor on a stepper motor turret and scan side to side. (This may be just an
excuse to play with the Switec steppers I have laying around.)

3) Use an MCU variant with two I2C busses. The 20 pin SAMD10/11 parts have an
additional I12C on PA22, PA23. So, experiments #1 and #2 may be interesting, but #3 is, I
suspect, likely to be the most usable solution. And, honestly, I may need to do this anyway
to get enough pins to do all of the robot-y things.

4) Use multiple MCUs. One MCU as the left half, another as the right, and a main brain that
they plug into. Of course, that is getting away from the simple/minimal goal...

And there is another experiment that is worth trying; see if the color sensor can detect
reflected light from a surface in front of it. I'm sure it can, but the idea would be to use it as
a sort of crude short range proximity detector.

But ... these sensors are tiny. (@_@) Can I even solder them?

So the plan of record is to use the SAMD11C (14 pin) parts to test the sensors and the
drivers. I will use a small Sparkfun I2C RGB LED strip to create a moving LED to track from
a sensor mounted on a servo. Then I will switch to the SAMD11D so I can have two 12C
busses and thus two sensors, and see how much the tracking is improved.

Watch this spot for updates.

12/10/22 Rethinking some of this... the reason to switch to the color sensors is because I
was not impressed with the results of my simple LED tests. While I intend to continue
testing the color sensors and RG LED drivers, I still want to pursue the plain old RGB LEDs
driver by MCU pins. If I can make that work it will be the least complex solution I have
contemplated.

Currently the plan of record is (may be) to try to get simple, short range, low bandwidth,
LED to LED communications working. The bot to bot messages are small, and high
throughput isn't really an issue, and if this works then it is less expensive than using the i/r
transceivers.

12/10/22 1 have reread all of the papers I have collected on communicating via LEDs. I am
convinced that is can be done, but so far my experiments have been unsatisfactory. The
mismatching of the blue LEDs of the vibrobot is still quite tedious. I need to replicate the
experiment using a less elaborate test bed. I admit that I overcomplicated things by seizing
the (long awaited) opportunity to try the vibrobot experiment by combining it with the LED
experiment as the means for aiming the LEDs.

Current State of Experimentation

There are two MCUs with LEDs. Initially red LEDs but they were quite dim so I switched to
blue LEDs.

One MCU simply lights its LED and leaves it on. The other MCU senses incoming light via its
LED and records how long it takes for the sensing LED to discharge. The sensing MCU
charges the LED by reverse biasing it, and then watches for the i/o pin to fall from high to
low as the capacitance of the LED discharges. In darkness the LED should not discharge,



and in bright light it should discharge very quickly (less than 100 microseconds, according
to the Mitsubishi paper).

s 'a"“'. 2
il



Here is a reading with the blue LEDs touching. That is about 100 usecs to discharge in
dim ambient light with the LEDs touching. Smaller numbers mean 'detecting more light'
and larger numbers mean 'detecting less light'.

= led_samples

[0] 86
[1] 98
[2] 98
[3] 99
[4] 105
[5] 99
[6] 105
[7] 99
[8] 105
[9] 104
[10] 99
[11] 98
[12] 104
[13] 104
[14] 99
[15] 104

led_average 100




This is a distance of about ~1 inch, with the timeout set to 500 microseconds.

= led_samples
[0] 260
[1] 296
[2] 308
[3] 309
[4] 320
[5] 321
[6] 310
[7] 320
[8] 326
[9] 315
[10] 320
[11] 315
[12] 316
[13] 297
[14] 296
[15] 310

led_average 308



This is at ~2 inches.

= led_samples
[0]
[1]
[2]
(3]
[4]
[5]
[6]
(7]
(8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
led_average

392
441
441
422
423
410
404
411
399
411
404
424
446
453
434
422
421



Notice that in the previous cases the LEDs are aimed as directly at each other as I can
manage. Here is an example at 1 inch with a slight angle. So, that isn't much different from
when I aimed them straight on.

= led_samples
[0] 254
[1] 296
[2] 308
[3] 309
[4] 308
[5] 320
[6] 315
[7] 321
[8] 320
[9] 321
[10] 320
[11] 320
[12] 315
[13] 320
[14] 308
[15] 303
led_average 309




And another with a larger angle. Clearly at this point the sensing LED doesn't really see the
emitting LED.

= led_samples
[0] 500
[1] 501
[2] 500
[3] 502
[4] 500
[5] 501
[6] 500
[7] 501
[8] 500
[9] 501
[10] 500
[11] 501
[12] 500
[13] 501
[14] 500
[15] 501
led_average 500

Some thoughts:

The Mitsubishi paper shows scope traces wherein the LED clearly discharges fully in under
100 usecs when the sensing LED is "illuminated by another LED", which is kind of unclear.
But I'd imagine that if the LEDs are touching each other that's as illuminated as they are
going to get. And under those conditions I was seeing about 100 usecs to discharge. So
that's encouraging, I suppose, that I am seeing a similar result.

The way my older robots sense light is simply via two instances of a photoresistor in series
with a capacitor, one as a left eye, one as a right eye. I charge the capacitor and time how
long it takes to discharge. The robot then turns towards whichever side is brighter. If the
readings are "about even" then the robot goes forward.

The photocells don't really have a significant 'angle of incidence' issue, but the LEDs seem
to. And the sensitivity of LEDs to angle of incidence seems problematic for my purposes. I
am curious whether this might work better with surface mount LEDs.



So, I soldered some SMT LEDs onto pins and installed them. I tried the blue, but they were
basically unable to detect the other unless they were essentially touching.

So I tried red. This was, interestingly, more promising. In moderate ambient light at one
inch the sensor could see the emitter.

Here is the ambient reading:

= led_samples
[0] 327
[1] 356
[2] 387
[3] 398
[4] 399
[5] 393
[6] 386
[7] 375
[8] 374
[9] 380
[10] 381
[11] 362
[12] 362
[13] 356
[14] 350
[15] 352
led_average 371




This is at about 1 inch, ambient, aimed straight on.
=l led_samples
[0]
[1]
[2]
(3]
[4]
[5]
[6]
[7]
(8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
led_average

183
206
218
218
213
218
218
212
213
218
218
218
212
219
218
218
213



Red SMT LEDs at 2 inches same ambient conditions (i.e., my office).

= led_samples
[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
led_average

188
212
225
224
232
230
230
237
232
224
224
224
231
230
230
236
225



Same setup, red, 2 inches, but darker ambient (overhead light off, desk lamps on, about 6
feet away). It seems to take longer to discharge because there is less ambient red light ... is
my theory.

=l led_samples
[0] 218
[1] 242
[2] 248
[3] 255
[4] 266
[5] 266
[6] 266
[7] 267
[8] 255
[9] 254
[10] 254
[11] 255
[12] 254
[13] 254
[14] 254
[15] 249
led_average 253

So at this point I'm thinking "hey, this isn't too bad, really." So of course I got stupid and
decided to swap the emitting and sensing LEDs to see if they both gave roughly the same
readings. And then things kind of stopped working right. I wasn't able to get back to the
original results, even if I put the LEDs back to their original positions.

So, I tried UV LEDs, and white LEDs, and the results were awful. Basically not sensing light.
So I decided something must be wrong with the setup. So I tried the red SMT LEDs again,
and they were 'working' in the sense that they could see each other. So I tried 5mm red
LEDs again, this time from a different manufacturer. And they seemed to work ... really
well. And get decent distance (like at least 4 or 5 inches) but they are very directional still.

So have I learned anything useful at all? Well, it's not going to be very easy for robots to
detect each other, move into proximity, align their beams, and communicate using this
scheme.

Maybe Do

Place an MCU on a breadboard and install two 'identical' standard (not RGB) LEDs, each
slightly angled to the side (like the vibrobot's eyes). Place the I2C RGB LED strip
horizontally so that the LEDs face the MCU's LEDs. Light each position on the LED bar one at
a time and take readings from the two MCU LEDs. Determine if the MCU LEDs register
approximately equivalent light when illuminated "head on' between then, and more/less
light when illuminated to the sides. I.e, can they be used to determine which way to turn?



Will this fail because the LEDs are mainly sensitive to other 'identical' LEDs? Or will it be
good enough?. Possibly I need to use plain old LEDs instead of RGBs.

Perform the tests for the LEDS I have and try to collect the data in a meaningful way so I
don't have to repeat these experiments again.

End



